

LA-UR-21-20409

Approved for public release; distribution is unlimited.

Seeing is Believing? Understanding the Interplay Between Observations and Simulations of Star Formation Title:

Author(s): Smullen, Rachel Ann

Fryer, Christopher Lee Donley, Jennifer Lynn

Intended for: Agnew & Metropolis Postdoctoral Fellow Research Showcase

Issued: 2021-01-19

Seeing is Believing?

Understanding the Interplay Between
Observations and Simulations
of Star Formation

Rachel Smullen (CCS-2)

Supervisors: Chris Fryer (CCS-2) Jennifer Donley (XTD-IDA)

20 January 2021

Agnew & Metropolis Postdoctoral Fellow Research Showcase

What is star formation?

The gravitational collapse of dense gas into a star

"Core"
Gravitationallybound gas that
will likely form
a star

Observation of G28.53-0.25: Lu+2015

Star formation is a confluence of many physical processes

Simulation (Gas density)

Observation (Ammonia: NH₃)

Gravity

Fluid Dynamics

Turbulence

Magnetic Fields

Radiation

Chemistry

Shock physics

and more...

What are the time-evolving observational and physical properties of gas that will form a star?

What are the time-evolving observational and physical properties of gas that will form a star?

Correlating "reality" and observations at one time:

characterize trends/ possible mistakes in observation interpretation

Understanding time evolution of cores: current structure finders aren't adaptable for changing

environments

Looking toward the future

- For more statistical power, will use state-of-the-art simulations from the STARFORGE collaboration
- Will develop new, flexible techniques for identifying and tracking cores through time

STARFORGE collaboration; Grudić+2020